

Approximating mixing distributions in probit models via a Bayesian approach

Lennart Oelschläger

November 24, 2020

The agenda

1 Discrete choice
■ Multinomial probit model
■ Mixing distributions
■ Latent class mixed multinomial probit model

2 Bayesian framework
■ Data augmentation

- Priors

■ Gibbs sampler

3 Latent class updating scheme

4 Simulations

Discrete choice

Assume that we
■ observe the choices of N decision makers (stated or revealed)
■ which decide between J mutually exclusive alternatives
\square at each of T choice occasions.

Commute to the university $(J=3)$:

Discrete choice

Assume that we
■ observe the choices of N decision makers (stated or revealed)
■ which decide between J mutually exclusive alternatives
\square at each of T choice occasions.

Example

Commute to the university $(J=3)$:

Multinomial probit model

Person n's utility $U_{n t j}$ for alternative j at choice occasion t is modelled as

$$
U_{n t j}=X_{n t j}^{\prime} \beta+\varepsilon_{n t j}
$$

for $n=1, \ldots, N, t=1, \ldots, T$ and $j=1, \ldots, J$, where (in the probit)

$$
\left(\varepsilon_{n t 1}, \ldots, \varepsilon_{n t J}\right)^{\prime} \sim \operatorname{MVN}_{J}(0, \Sigma)
$$

We have to normalize with respect to

- level (by taking utility differences, reference alternative J) and
- scale (by setting $\tilde{\Sigma}_{11}=1$).

Let $y_{n t}=j$ denote that n chooses j at t. We have the link

Multinomial probit model

Person n's utility $U_{n t j}$ for alternative j at choice occasion t is modelled as

$$
U_{n t j}=X_{n t j}^{\prime} \beta+\varepsilon_{n t j}
$$

for $n=1, \ldots, N, t=1, \ldots, T$ and $j=1, \ldots, J$, where (in the probit)

$$
\left(\varepsilon_{n t 1}, \ldots, \varepsilon_{n t J}\right)^{\prime} \sim \operatorname{MVN}_{J}(0, \Sigma)
$$

We have to normalize with respect to

- level (by taking utility differences, reference alternative J) and
\square scale (by setting $\tilde{\Sigma}_{11}=1$).
Let $y_{n t}=j$ denote that n chooses j at t. We have the link

Multinomial probit model

Person n's utility $U_{n t j}$ for alternative j at choice occasion t is modelled as

$$
U_{n t j}=X_{n t j}^{\prime} \beta+\varepsilon_{n t j}
$$

for $n=1, \ldots, N, t=1, \ldots, T$ and $j=1, \ldots, J$, where (in the probit)

$$
\left(\varepsilon_{n t 1}, \ldots, \varepsilon_{n t J}\right)^{\prime} \sim \operatorname{MVN}_{J}(0, \Sigma)
$$

We have to normalize with respect to
■ level (by taking utility differences, reference alternative J) and
■ scale (by setting $\tilde{\Sigma}_{11}=1$).
Let $y_{n t}=j$ denote that n chooses j at t. We have the link

$$
y_{n t}=\sum_{j=1}^{J-1} j \cdot 1\left(U_{n t j}=\max _{i} U_{n t i}>0\right)+J \cdot 1\left(U_{n t j}<0 \text { for all } j\right)
$$

Mixing distributions

Definition (Multinomial probit model)

Person n's utility $U_{n t j}$ for j at t is modeled as

$$
U_{n t j}=X_{n t j}^{\prime} \beta+\varepsilon_{n t j} .
$$

■ different decision makers have different sensitivities

- Allowing for heterogeneity: $U_{n t j}=X_{n t j}^{\prime} \beta_{n}+\varepsilon_{n t j}, \quad \beta_{n} \sim f(\beta)$, e.g.
- What is the "correct" f ?

Mixing distributions

Definition (Multinomial probit model)

Person n's utility $U_{n t j}$ for j at t is modeled as

$$
U_{n t j}=X_{n t j}^{\prime} \beta+\varepsilon_{n t j} .
$$

■ different decision makers have different sensitivities
\square Allowing for heterogeneity: $U_{n t j}=X_{n t j}^{\prime} \beta_{n}+\varepsilon_{n t j}, \quad \beta_{n} \sim f(\beta)$, e.g.

$\mathrm{MVN}_{2}(b, \Omega)$
(to capture correlation patterns: lower cost sensitivity correlated with higher time sensitivity for business travelers?)

■ What is the "correct" f ?

Mixing distributions

Definition (Multinomial probit model)

Person n's utility $U_{n t j}$ for j at t is modeled as

$$
U_{n t j}=X_{n t j}^{\prime} \beta+\varepsilon_{n t j} .
$$

■ different decision makers have different sensitivities
\square Allowing for heterogeneity: $U_{n t j}=X_{n t j}^{\prime} \beta_{n}+\varepsilon_{n t j}, \quad \beta_{n} \sim f(\beta)$, e.g.

- $\beta_{\text {cost }, n} \sim-\mathcal{L N}\left(\mu, \sigma^{2}\right)$

- What is the "correct" f ?

Mixing distributions

Definition (Multinomial probit model)

Person n's utility $U_{n t j}$ for j at t is modeled as

$$
U_{n t j}=X_{n t j}^{\prime} \beta+\varepsilon_{n t j} .
$$

■ different decision makers have different sensitivities
\square Allowing for heterogeneity: $U_{n t j}=X_{n t j}^{\prime} \beta_{n}+\varepsilon_{n t j}, \quad \beta_{n} \sim f(\beta)$, e.g.

- $\beta_{\text {cost }, n} \sim-\mathcal{L N}\left(\mu, \sigma^{2}\right)$
$\square\left[\begin{array}{l}\beta_{\text {time }, n} \\ \beta_{\text {cost }, n}\end{array}\right] \sim \operatorname{MVN}_{2}(b, \Omega)$
(to capture correlation patterns: lower cost sensitivity correlated with higher time sensitivity for business travelers?)

Mixing distributions

Definition (Multinomial probit model)

Person n's utility $U_{n t j}$ for j at t is modeled as

$$
U_{n t j}=X_{n t j}^{\prime} \beta+\varepsilon_{n t j} .
$$

■ different decision makers have different sensitivities
\square Allowing for heterogeneity: $U_{n t j}=X_{n t j}^{\prime} \beta_{n}+\varepsilon_{n t j}, \quad \beta_{n} \sim f(\beta)$, e.g.

- $\beta_{\text {cost }, n} \sim-\mathcal{L N}\left(\mu, \sigma^{2}\right)$
- $\left[\begin{array}{l}\beta_{\text {time }, n} \\ \beta_{\text {cost }, n}\end{array}\right] \sim \mathrm{MVN}_{2}(b, \Omega)$
(to capture correlation patterns: lower cost sensitivity correlated with higher time sensitivity for business travelers?)
■ What is the "correct" f ?

Latent class mixed multin. probit model

Definition

$$
\begin{gathered}
\text { For } n=1, \ldots, N, t=1, \ldots, T \text { and } j=1, \ldots, J-1, \\
U_{n t j}=W_{n t j}^{\prime} \alpha+X_{n t j}^{\prime} \beta_{n}+\varepsilon_{n t j},
\end{gathered}
$$

where

- $W_{n t j}$ is a vector of P_{f} differenced characteristics of j as faced by n at t corresponding to the fixed coefficient vector $\alpha \in \mathbb{R}^{P_{t}}$,
- $X_{n t j}$ is a vector of P_{r} differenced characteristics of j as faced by n at t corresponding to the random, decision maker-specific coefficient vector $\beta_{n} \in \mathbb{R}^{P_{r}}$,
- $\left(\varepsilon_{n t 1}, \ldots, \varepsilon_{n t(J-1)}\right)^{\prime} \sim \operatorname{MVN}_{J-1}(0, \tilde{\Sigma})$ with $\tilde{\Sigma}_{11}=1$,

Latent class mixed multin. probit model

Definition

For $n=1, \ldots, N, t=1, \ldots, T$ and $j=1, \ldots, J-1$,

$$
U_{n t j}=W_{n t j}^{\prime} \alpha+X_{n t j}^{\prime} \beta_{n}+\varepsilon_{n t j}
$$

where
$\square y_{n t}=\sum_{j=1}^{J-1} j \cdot 1\left(U_{n t j}=\max _{i} U_{n t i}>0\right)+J \cdot 1\left(U_{n t j}<0\right.$ for all $\left.j\right)$
\square and

$$
\begin{aligned}
& \beta_{n} \mid b, \Omega \sim \sum_{c=1}^{c} s_{c} \cdot \operatorname{MVN}_{P_{r}}\left(b_{c}, \Omega_{c}\right) \\
\Leftrightarrow & \operatorname{Prob}\left(z_{n}=c\right)=s_{c} \text { and } \beta_{n} \mid z, b, \Omega \sim \operatorname{MVN}_{p_{r}}\left(b_{z_{n}}, \Omega_{z_{n}}\right)
\end{aligned}
$$

Latent class mixed multin. probit model

Definition

For $n=1, \ldots, N, t=1, \ldots, T$ and $j=1, \ldots, J-1$,

$$
U_{n t j}=W_{n t j}^{\prime} \alpha+X_{n t j}^{\prime} \beta_{n}+\varepsilon_{n t j}
$$

where
$\square y_{n t}=\sum_{j=1}^{J-1} j \cdot 1\left(U_{n t j}=\max _{i} U_{n t i}>0\right)+J \cdot 1\left(U_{n t j}<0\right.$ for all $\left.j\right)$

- and

$$
\begin{aligned}
& \beta_{n} \mid b, \Omega \sim \sum_{c=1}^{c} s_{c} \cdot \operatorname{MVN}_{P_{r}}\left(b_{c}, \Omega_{c}\right) \\
\Longleftrightarrow & \operatorname{Prob}\left(z_{n}=c\right)=s_{c} \quad \text { and } \quad \beta_{n} \mid z, b, \Omega \sim \operatorname{MVN}_{P_{r}}\left(b_{z_{n}}, \Omega_{z_{n}}\right)
\end{aligned}
$$

Data augmentation

- "generate a variable that wasn't there before"
- treat the latent utilities U as parameters
- conditional on the latent utilities, the model constitutes a standard Bayesian linear regression set-up ($U=X \beta+\varepsilon$)
- drawing from the posterior distribution becomes feasible without the need to evaluate any likelihood
- numerical advantages

Data augmentation

- "generate a variable that wasn't there before"
- treat the latent utilities U as parameters
- conditional on the latent utilities, the model constitutes a standard Bayesian linear regression set-up $(U=X \beta+\varepsilon)$
\square drawing from the posterior distribution becomes feasible without the need to evaluate any likelihood
- numerical advantages

Data augmentation

- "generate a variable that wasn't there before"
- treat the latent utilities U as parameters

■ conditional on the latent utilities, the model constitutes a standard Bayesian linear regression set-up $(U=X \beta+\varepsilon)$

- drawing from the posterior distribution becomes feasible without the need to evaluate any likelihood
- numerical advantages

Data augmentation

- "generate a variable that wasn't there before"
- treat the latent utilities U as parameters
- conditional on the latent utilities, the model constitutes a standard Bayesian linear regression set-up ($U=X \beta+\varepsilon$)
- drawing from the posterior distribution becomes feasible without the need to evaluate any likelihood

Data augmentation

- "generate a variable that wasn't there before"
- treat the latent utilities U as parameters
- conditional on the latent utilities, the model constitutes a standard Bayesian linear regression set-up ($U=X \beta+\varepsilon$)
- drawing from the posterior distribution becomes feasible without the need to evaluate any likelihood
- numerical advantages
- avoids approximation of Gaussians
- reduces curse of dimensionality (starting values)
- faster?

Data augmentation

- "generate a variable that wasn't there before"
- treat the latent utilities U as parameters
- conditional on the latent utilities, the model constitutes a standard Bayesian linear regression set-up ($U=X \beta+\varepsilon$)
- drawing from the posterior distribution becomes feasible without the need to evaluate any likelihood
- numerical advantages
- avoids approximation of Gaussians
- reduces curse of dimensionality (starting values)
. faster?

Data augmentation

- "generate a variable that wasn't there before"
- treat the latent utilities U as parameters
- conditional on the latent utilities, the model constitutes a standard Bayesian linear regression set-up ($U=X \beta+\varepsilon$)
- drawing from the posterior distribution becomes feasible without the need to evaluate any likelihood
- numerical advantages
- avoids approximation of Gaussians
- reduces curse of dimensionality (starting values)

Data augmentation

- "generate a variable that wasn't there before"
- treat the latent utilities U as parameters
- conditional on the latent utilities, the model constitutes a standard Bayesian linear regression set-up ($U=X \beta+\varepsilon$)
- drawing from the posterior distribution becomes feasible without the need to evaluate any likelihood
- numerical advantages
- avoids approximation of Gaussians
- reduces curse of dimensionality (starting values)
- faster?

Priors

We apply the following conjugate priors:
($\left.s_{1}, \ldots, s_{C}\right) \sim D_{C}(\delta)$, where $D_{C}(\delta)$ denotes the C-dimensional
Dirichlet distribution with concentration parameter vector
$\delta=\left(\delta_{1}, \ldots, \delta_{C}\right)$,
$=\alpha \sim M V N_{P_{f}}(\Psi, \Psi)$,
$=b_{C} \sim M V N_{P_{r}}(\xi, \equiv)$, independent for all c,
$=\Omega_{C} \sim W_{P_{r}}^{-1}(\nu, \Theta)$, independent for all c, where $W_{P_{r}}^{-1}(\nu, \Theta)$ denotes
the P_{r}-dimensional inverse Wishart distribution with ν degrees of
freedom and scale matrix Θ,
and $\Sigma \sim W_{J-1}^{-1}(\kappa, \Lambda)$.
arameters can be set based on previous estimation results or diffuse.

Priors

We apply the following conjugate priors:
$\square\left(s_{1}, \ldots, s_{C}\right) \sim D_{C}(\delta)$, where $D_{C}(\delta)$ denotes the C-dimensional Dirichlet distribution with concentration parameter vector $\delta=\left(\delta_{1}, \ldots, \delta_{C}\right)$,
■ $\alpha \sim \operatorname{MVN}_{P_{f}}(\psi, \Psi)$,
$■ b_{c} \sim \operatorname{MVN}_{P_{r}}(\xi$, 三), independent for all c,
$\square \Omega_{c} \sim W_{P_{r}}^{-1}(\nu, \Theta)$, independent for all c, where $W_{P_{r}}^{-1}(\nu, \Theta)$ denotes the P_{r}-dimensional inverse Wishart distribution with v degrees of freedom and scale matrix Θ,
\square and $\Sigma \sim W_{J-1}^{-1}(\kappa, \Lambda)$.

[^0]
Priors

We apply the following conjugate priors:
$■\left(s_{1}, \ldots, s_{C}\right) \sim D_{C}(\delta)$, where $D_{C}(\delta)$ denotes the C-dimensional Dirichlet distribution with concentration parameter vector $\delta=\left(\delta_{1}, \ldots, \delta_{C}\right)$,
$■ \alpha \sim \operatorname{MVN}_{P_{f}}(\psi, \Psi)$,
$\square b_{c} \sim \operatorname{MVN}_{P_{r}}(\xi, \equiv)$, independent for all c,
$\square \Omega_{c} \sim W_{P_{r}}^{-1}(\nu, \Theta)$, independent for all c, where $W_{P_{r}}^{-1}(\nu, \Theta)$ denotes the P_{r}-dimensional inverse Wishart distribution with v degrees of freedom and scale matrix Θ,
■ and $\Sigma \sim W_{J-1}^{-1}(\kappa, \Lambda)$.
Parameters can be set based on previous estimation results or diffuse.

Gibbs sampler

Drawing from the conditional posteriors:

Gibbs sampler

Drawing from the conditional posteriors:
1 draw $\left(s_{1}, \ldots, s_{C}\right) \mid \delta, z \sim D_{C}$
2 draw z from its conditional distribution
3 draw $b_{C} \mid \equiv, \Omega, \xi, z, \beta \sim M V N_{P_{r}}$
4 draw $\Omega_{c} \mid v, \Theta, z, \beta, b \sim W_{P_{-}}^{-1}$
5 draw $U \sim T M V N_{J-1}$ via sub-Gibbs sampler (Geweke, 1998)
6. draw $\alpha \mid \Psi, \psi, W, \Sigma, U, X, \beta \sim \operatorname{MVN}_{P_{f}}$

7 draw $\beta_{n} \mid \Omega, b, X, \Sigma, U, W, \alpha \sim M V N_{P_{r}}$
8 draw $\Sigma \mid k, \wedge, U, W, \alpha, X, \beta \sim W_{J-1}^{-1}(k+N T, \Lambda+S)$
9 start again at 1

Gibbs sampler

Drawing from the conditional posteriors:
1 draw $\left(s_{1}, \ldots, s_{C}\right) \mid \delta, z \sim D_{C}$
2 draw z from its conditional distribution

(4) draw $\Omega_{c} \mid v, \Theta, z, \beta, b \sim W_{P_{r}}^{-1}$

5 draw $U \sim$ TMVN $_{J-1}$ via sub-Gibbs sampler (Geweke, 1998)

6] draw $\alpha \mid \Psi, \psi, W, \Sigma, U, X, \beta \sim \operatorname{MVN}_{P_{f}}$
7 draw $\beta_{n} \mid \Omega, b, X, \Sigma, U, W, \alpha \sim M_{P} P_{r}$
${ }_{8}$ draw $\Sigma \mid \kappa, \wedge, U, W, \alpha, X, \beta \sim W_{J-1}^{-1}(\kappa+N T, \wedge+S)$
© start again at l1

Gibbs sampler

Drawing from the conditional posteriors:
1 draw $\left(s_{1}, \ldots, s_{C}\right) \mid \delta, z \sim D_{C}$
2 draw z from its conditional distribution
3 draw $b_{c} \mid \equiv, \Omega, \xi, z, \beta \sim \operatorname{MVN}_{P_{r}}$
4 draw $\Omega_{c} \mid \nu, \Theta, z, \beta, b \sim W_{P_{r}}^{-1}$
5 draw $U \sim$ TMVN $_{J-1}$ via sub-Gibbs sampler (Geweke, 1998)

6] draw $\alpha \mid \Psi, \psi, W, \Sigma, U, X, \beta \sim \operatorname{MVN}_{P_{f}}$
7 draw $\beta_{n} \mid \Omega, b, X, \Sigma, U, W, \alpha \sim \operatorname{MVN}_{P_{r}}$
${ }_{8}$ draw $\Sigma \mid \kappa, \wedge, U, W, \alpha, X, \beta \sim W_{J-1}^{-1}(\kappa+N T, \wedge+S)$
© start again at l1

Gibbs sampler

Drawing from the conditional posteriors:
1 draw $\left(s_{1}, \ldots, s_{C}\right) \mid \delta, z \sim D_{C}$
2 draw z from its conditional distribution
3 draw $b_{c} \mid \equiv, \Omega, \xi, z, \beta \sim \operatorname{MVN}_{P_{r}}$
4 draw $\Omega_{c} \mid \nu, \Theta, z, \beta, b \sim W_{P_{r}}^{-1}$
5 draw U ~ TMVN ${ }_{J-1}$ via sub-Gibbs sampler (Geweke, 1998)
© ${ }^{6}$ draw $\alpha \mid \Psi, \psi, W, \Sigma, U, X, \beta \sim \operatorname{MVN}_{P_{f}}$
7 draw $\beta_{n} \mid \Omega, b, X, \Sigma, U, W, \alpha \sim \operatorname{MVN}_{P_{r}}$
${ }_{8}$ draw $\Sigma \mid \kappa, \wedge, U, W, \alpha, X, \beta \sim W_{J-1}^{-1}(\kappa+N T, \wedge+S)$
© start again at l1

Gibbs sampler

Drawing from the conditional posteriors:
11 draw $\left(s_{1}, \ldots, s_{C}\right) \mid \delta, z \sim D_{C}$
2 draw z from its conditional distribution
3 draw $b_{c} \mid \equiv, \Omega, \xi, z, \beta \sim \operatorname{MVN}_{P_{r}}$
4 draw $\Omega_{c} \mid \nu, \Theta, z, \beta, b \sim W_{P_{r}}^{-1}$
5 draw $U \sim \operatorname{TMVN}_{J-1}$ via sub-Gibbs sampler (Geweke, 1998)
© ${ }^{6}$ draw $\alpha \mid \Psi, \psi, W, \Sigma, U, X, \beta \sim \operatorname{MVN}_{P_{f}}$
7 draw $\beta_{n} \mid \Omega, b, X, \Sigma, U, W, \alpha \sim \operatorname{MVN}_{P_{r}}$
${ }_{8}$ draw $\Sigma \mid \kappa, \wedge, U, W, \alpha, X, \beta \sim W_{J-1}^{-1}(\kappa+N T, \wedge+S)$
© start again at 1

Gibbs sampler

Drawing from the conditional posteriors:
1 draw $\left(s_{1}, \ldots, s_{C}\right) \mid \delta, z \sim D_{C}$
2 draw z from its conditional distribution
3 draw $b_{c} \mid \equiv, \Omega, \xi, z, \beta \sim \operatorname{MVN}_{P_{r}}$
4 draw $\Omega_{c} \mid \nu, \Theta, z, \beta, b \sim W_{P_{r}}^{-1}$
5 draw $U \sim \mathrm{TMVN}_{J-1}$ via sub-Gibbs sampler (Geweke, 1998)

$$
\square U_{n t j} \mid U_{n t(-j)}, y_{n t}, \cdots \sim \operatorname{MVN}_{1} \cdot \begin{cases}1\left(U_{n t j}>\max \left(U_{n t(-j)}, 0\right)\right) & \text { if } y_{n t}=j \\ 1\left(U_{n t j}<\max \left(U_{n t(-j)}, 0\right)\right) & \text { if } y_{n t} \neq j\end{cases}
$$

6. draw $\alpha \mid \Psi, \psi, W, \Sigma, U, X, \beta \sim M V N_{P_{f}}$

7 draw $\beta_{n} \mid \Omega, b, X, \Sigma, U, W, \alpha \sim M V N_{P_{r}}$
8 draw $\Sigma \mid k, \Lambda, U, W, \alpha, X, \beta \sim W_{J-1}^{-1}(k+N T, \Lambda+S)$
Q start again at 1

Gibbs sampler

Drawing from the conditional posteriors:
1 draw $\left(s_{1}, \ldots, s_{C}\right) \mid \delta, z \sim D_{C}$
2 draw z from its conditional distribution
3 draw $b_{c} \mid \equiv, \Omega, \xi, z, \beta \sim \operatorname{MVN}_{P_{r}}$
4 draw $\Omega_{c} \mid \nu, \Theta, z, \beta, b \sim W_{P_{r}}^{-1}$
5 draw $U \sim \mathrm{TMVN}_{J-1}$ via sub-Gibbs sampler (Geweke, 1998)

$$
\square U_{n t j} \mid U_{n t(-j)}, y_{n t}, \cdots \sim \operatorname{MVN}_{1} \cdot \begin{cases}1\left(U_{n t j}>\max \left(U_{n t(-j)}, 0\right)\right) & \text { if } y_{n t}=j \\ 1\left(U_{n t j}<\max \left(U_{n t(-j)}, 0\right)\right) & \text { if } y_{n t} \neq j\end{cases}
$$

6 draw $\alpha \mid \Psi, \psi, W, \Sigma, U, X, \beta \sim \operatorname{MVN}_{P_{f}}$
\square draw $\beta_{n} \mid \Omega, b, X, \Sigma, U, W, \alpha \sim M V N_{P_{r}}$
8 draw $\Sigma \mid k, \Lambda, U, W, \alpha, X, \beta \sim W_{J-1}^{-1}(k+N T, \Lambda+S)$
9 start again at 1

Gibbs sampler

Drawing from the conditional posteriors:
11 draw $\left(s_{1}, \ldots, s_{C}\right) \mid \delta, z \sim D_{C}$
2 draw z from its conditional distribution
3 draw $b_{c} \mid \equiv, \Omega, \xi, z, \beta \sim \operatorname{MVN}_{P_{r}}$
4 draw $\Omega_{c} \mid \nu, \Theta, z, \beta, b \sim W_{P_{r}}^{-1}$
5 draw $U \sim \operatorname{TMVN}_{J-1}$ via sub-Gibbs sampler (Geweke, 1998)

$$
■ U_{n t j} \mid U_{n t(-j)}, y_{n t}, \cdots \sim \operatorname{MVN}_{1} \cdot \begin{cases}1\left(U_{n t j}>\max \left(U_{n t(-j)}, 0\right)\right) & \text { if } y_{n t}=j \\ 1\left(U_{n t j}<\max \left(U_{n t(-j)}, 0\right)\right) & \text { if } y_{n t} \neq j\end{cases}
$$

6 draw $\alpha \mid \Psi, \psi, W, \Sigma, U, X, \beta \sim \operatorname{MVN}_{P_{f}}$
7 draw $\beta_{n} \mid \Omega, b, X, \Sigma, U, W, \alpha \sim M V N_{P_{r}}$
B draw $\Sigma \mid k, \wedge, U, W, \alpha, X, \beta \sim W_{J-1}^{-1}(k+N T, \wedge+S)$
© start again at 1

Gibbs sampler

Drawing from the conditional posteriors:
1 draw $\left(s_{1}, \ldots, s_{C}\right) \mid \delta, z \sim D_{C}$
2 draw z from its conditional distribution
3 draw $b_{c} \mid \equiv, \Omega, \xi, z, \beta \sim \operatorname{MVN}_{P_{r}}$
4 draw $\Omega_{c} \mid v, \Theta, z, \beta, b \sim W_{P_{r}}^{-1}$
5 draw $U \sim \operatorname{TMVN}_{J-1}$ via sub-Gibbs sampler (Geweke, 1998)

$$
\square U_{n t j} \mid U_{n t(-j)}, y_{n t}, \cdots \sim \operatorname{MVN}_{1} \cdot \begin{cases}1\left(U_{n t j}>\max \left(U_{n t(-j)}, 0\right)\right) & \text { if } y_{n t}=j \\ 1\left(U_{n t j}<\max \left(U_{n t(-j)}, 0\right)\right) & \text { if } y_{n t} \neq j\end{cases}
$$

$6 \operatorname{draw} \alpha \mid \Psi, \psi, W, \Sigma, U, X, \beta \sim \operatorname{MVN}_{P_{f}}$
7 draw $\beta_{n} \mid \Omega, b, X, \Sigma, U, W, \alpha \sim \operatorname{MVN}_{P_{r}}$
$8 \operatorname{draw} \Sigma \mid \kappa, \Lambda, U, W, \alpha, X, \beta \sim W_{J-1}^{-1}(\kappa+N T, \Lambda+S)$

- start again at 1

Gibbs sampler

Drawing from the conditional posteriors:
1 draw $\left(s_{1}, \ldots, s_{C}\right) \mid \delta, z \sim D_{C}$
2 draw z from its conditional distribution
3 draw $b_{c} \mid \equiv, \Omega, \xi, z, \beta \sim \operatorname{MVN}_{P_{r}}$
4 draw $\Omega_{c} \mid \nu, \Theta, z, \beta, b \sim W_{P_{r}}^{-1}$
5 draw $U \sim \mathrm{TMVN}_{J-1}$ via sub-Gibbs sampler (Geweke, 1998)

$$
■ U_{n t j} \mid U_{n t(-j)}, y_{n t}, \cdots \sim \operatorname{MVN}_{1} \cdot \begin{cases}1\left(U_{n t j}>\max \left(U_{n t(-j)}, 0\right)\right) & \text { if } y_{n t}=j \\ 1\left(U_{n t j}<\max \left(U_{n t(-j)}, 0\right)\right) & \text { if } y_{n t} \neq j\end{cases}
$$

6 draw $\alpha \mid \Psi, \psi, W, \Sigma, U, X, \beta \sim \operatorname{MVN}_{P_{f}}$
7 draw $\beta_{n} \mid \Omega, b, X, \Sigma, U, W, \alpha \sim \mathrm{MVN}_{P_{r}}$
8 draw $\Sigma \mid \kappa, \Lambda, U, W, \alpha, X, \beta \sim W_{J-1}^{-1}(\kappa+N T, \Lambda+S)$
9 start again at 1

Gibbs sampler

Periods:

$\square 0, \ldots, B$ - discard draws
■ $B / 2, \ldots, B$ - latent class updating
■ B, \ldots, R - keep every Q th draw

Normalization (Imai and van Dyk, 2005):

■ is drawn from the unrestricted space of symmetric, positive-definite matrices, therefore the samples lack identification ■ normalize $\alpha^{(i)} / \sqrt{\left(\Sigma^{(i)}\right)_{11}}, b_{c}^{(i)} / \sqrt{\left(\Sigma^{(i)}\right)_{11}}, \Omega_{c}^{(i)} /\left(\Sigma^{(i)}\right)_{11}, \Sigma^{(i)} /\left(\Sigma^{(i)}\right)_{11}$

Gibbs sampler

Periods:
$\square 0, \ldots, B$ - discard draws
■ $B / 2, \ldots, B$ - latent class updating
■ B, \ldots, R - keep every Q th draw

Normalization (Imai and van Dyk, 2005):
■ is drawn from the unrestricted space of symmetric, positive-definite matrices, therefore the samples lack identification
\square normalize $\alpha^{(i)} / \sqrt{\left(\Sigma^{(i)}\right)_{11}}, b_{c}^{(i)} / \sqrt{\left(\Sigma^{(i)}\right)_{11}}, \Omega_{c}^{(i)} /\left(\Sigma^{(i)}\right)_{11}, \Sigma^{(i)} /\left(\Sigma^{(i)}\right)_{11}$

Latent class updating scheme

Within the second half of the burn-in period, every 50th iteration:

Latent class updating scheme

Within the second half of the burn-in period, every 50th iteration:
\square Remove class c, if $s_{c}<\varepsilon_{\text {min }}$.

- Split class c into two classes c_{1} and c_{2}, if $S_{C}>\varepsilon_{\text {max }}$. The class means $b_{c_{1}}$ and $b_{c_{2}}$ of the new classes c_{1} and c_{2} are shifted in opposite directions from the class mean b_{c} of the old class c in the direction of the highest variance.
- Join two classes c_{1} and c_{2} to one class c, if $\left\|b_{c_{1}}-b_{c_{2}}\right\|<\varepsilon_{\text {distmin }}$. The parameters of c are assigned by adding the values of s from c_{1} and C_{2} and averaging the values for b and Ω.

Latent class updating scheme

Within the second half of the burn-in period, every 50th iteration:
\square Remove class c, if $s_{c}<\varepsilon_{\text {min }}$.
\square Split class c into two classes c_{1} and c_{2}, if $s_{c}>\varepsilon_{\text {max }}$. The class means $b_{c_{1}}$ and $b_{c_{2}}$ of the new classes c_{1} and c_{2} are shifted in opposite directions from the class mean b_{c} of the old class c in the direction of the highest variance.

The parameters of c are assigned by adding the values of s from c_{1} and c_{2} and averaging the values for b and Ω.

Latent class updating scheme

Within the second half of the burn-in period, every 50th iteration:

- Remove class c, if $s_{c}<\varepsilon_{\text {min }}$.
- Split class c into two classes c_{1} and c_{2}, if $s_{c}>\varepsilon_{\text {max }}$. The class means $b_{c_{1}}$ and $b_{c_{2}}$ of the new classes c_{1} and c_{2} are shifted in opposite directions from the class mean b_{c} of the old class c in the direction of the highest variance.
$■$ Join two classes c_{1} and c_{2} to one class c, if $\left\|b_{c_{1}}-b_{c_{2}}\right\|<\varepsilon_{\text {distmin }}$. The parameters of c are assigned by adding the values of s from c_{1} and c_{2} and averaging the values for b and Ω.

Simulation 1

$P_{r}=2$ with 4 latent classes

Simulation 1

$P_{r}=2$ with 4 true latent classes

Simulation 1

$P_{r}=2$ with 4 true latent classes

Simulation 1

$P_{r}=2$ with 4 true latent classes

9 classes in iteration 25000

Simulation 1

$P_{r}=2$ with 4 true latent classes

Simulation 1

$P_{r}=2$ with 4 true latent classes

Simulation 1

$P_{r}=2$ with 4 true latent classes

Simulation 1

$P_{r}=2$ with 4 true latent classes

Simulation 1

$P_{r}=2$ with 4 true latent classes

Simulation 1

$P_{r}=2$ with 4 true latent classes

Simulation 2

$P_{r}=1$, controversial choice attribute (e.g. out-of-vehicle travel time)

Simulation 3

$P_{r}=2$, sign-restricted choice attribute (e.g. cost)

Estimated mixing distribution (posterior mean as point estimate):

Thanks for listening, questions please!

Simulation 3

$P_{r}=2$, sign-restricted choice attribute (e.g. cost)

Estimated mixing distribution (posterior mean as point estimate):

$$
\begin{aligned}
{\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right] \sim } & 0.16 \cdot \mathrm{MVN}_{2}\left(\binom{-4.52}{0.36},\left(\begin{array}{cc}
1.72 & -0.28 \\
\cdot & 1.41
\end{array}\right)\right)+0.29 \cdot \mathrm{MVN}_{2}\left(\binom{-1.33}{4.77},\left(\begin{array}{cc}
0.86 & 0.13 \\
\cdot & 1.08
\end{array}\right)\right) \\
& +0.55 \cdot \mathrm{MVN}_{2}\left(\binom{-1.41}{-1.92},\left(\begin{array}{cc}
0.72 & 0.15 \\
\cdot & 1.59
\end{array}\right)\right)
\end{aligned}
$$

Thanks for listening, questions please!

Simulation 3

$P_{r}=2$, sign-restricted choice attribute (e.g. cost)

Estimated mixing distribution (posterior mean as point estimate):

$$
\begin{aligned}
{\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right] \sim } & 0.16 \cdot \mathrm{MVN}_{2}\left(\binom{-4.52}{0.36},\left(\begin{array}{cc}
1.72 & -0.28 \\
\cdot & 1.41
\end{array}\right)\right)+0.29 \cdot \mathrm{MVN}_{2}\left(\binom{-1.33}{4.77},\left(\begin{array}{cc}
0.86 & 0.13 \\
\cdot & 1.08
\end{array}\right)\right) \\
& +0.55 \cdot \mathrm{MVN}_{2}\left(\binom{-1.41}{-1.92},\left(\begin{array}{cc}
0.72 & 0.15 \\
\cdot & 1.59
\end{array}\right)\right)
\end{aligned}
$$

Thanks for listening, questions please!

[^0]: Parameters can be set based on previous estimation results or diffuse.

