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Discrete choice

Assume that we
m observe the choices of N decision makers (stated or revealed)
m which decide between J mutually exclusive alternatives
m at each of T choice occasions.
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Discrete choice

Assume that we
m observe the choices of N decision makers (stated or revealed)
m which decide between J mutually exclusive alternatives
m at each of T choice occasions.

Commute to the university (J = 3):

Ubicycle 0€ 10min Og Beost Ebicycle
Ucar = 2€ 5min 809 . ﬁtime + gcar
Unelicopter 500€ 1min 900g emission Enhelicopter

utility vector U choice characteristics X sensitivites 8 model’s mistake ¢
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Multinomial probit model

Person n's utility Upy; for alternative j at choice occasion t is modelled as
forn=1,...,N,t=1,...,Tandj=1,...,J, where (in the probit)

(fnﬂ PR 7£ntJ)l ~ MVNJ(O’ z)
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Multinomial probit model

Person n's utility Uy for alternative j at choice occasion ¢ is modelled as
Unj = XpgB + €ni
forn=1,...,N,t=1,...,Tandj=1,...,J, where (in the probit)
(entt, -+ €ntg)” ~ MVN,(O, T).

We have to normalize with respect to
m level (by taking utility differences, reference alternative J) and

m scale (by setting 11 = 1).
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Multinomial probit model
Person n's utility Uy for alternative j at choice occasion ¢ is modelled as
Unj = XpgB + €ni
forn=1,...,N,t=1,...,Tandj=1,...,J, where (in the probit)
(entt, -+ €ntg)” ~ MVN,(O, T).

We have to normalize with respect to
m level (by taking utility differences, reference alternative J) and
m scale (by setting 11 = 1).
Let y,t = j denote that n chooses j at t. We have the link
J—1
Yor =) j-1 <U,,t,-= max Up; > o) +J -1 (Upj < Oforall j).
j=1
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Mixing distributions

Definition (Multinomial probit model)

Person n's utility Uy for j at t is modeled as

U’"f = Xfl’t/ﬁ + Entj.

m different decision makers have different sensitivities
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Mixing distributions

Definition (Multinomial probit model)
Person n's utility Uy for j at t is modeled as

Ljnﬂ = )(AUI3'+'gnU.

m different decision makers have different sensitivities

m Allowing for heterogeneity: Unj = X7;Bn + €, Bn ~ f(B),
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Mixing distributions

Definition (Multinomial probit model)
Person n's utility Uy for j at t is modeled as

Un[j = X’{It/ﬁ + gntj.
m different decision makers have different sensitivities

m Allowing for heterogeneity: Unj = X,;Bn + €ny,  Bn ~ f(B), €.9.
| ﬁcost,n ~ _'CN(M 0'2)

Lennart Oelschlager November 24, 2020 3/12



Mixing distributions

Definition (Multinomial probit model)

Person n's utility Uy for j at t is modeled as

U”ff = Xfl’t/ﬁ aF Entj.

m different decision makers have different sensitivities

m Allowing for heterogeneity: Unj = X,;Bn + €ny,  Bn ~ f(B), €.9.
¥ Beostn ~ —LN(u,0?)
: ﬁ“me’"} ~ MVNa(b, Q)

ﬁcost,n
(to capture correlation patterns: lower cost sensitivity correlated with

higher time sensitivity for business travelers?)

Lennart Oelschlager November 24, 2020 3/12



Mixing distributions

Definition (Multinomial probit model)

Person n's utility Uy for j at t is modeled as

U”ff = Xfl’t/ﬁ aF Entj.

m different decision makers have different sensitivities

m Allowing for heterogeneity: Unj = X,;Bn + €ny,  Bn ~ f(B), €.9.
¥ Beostn ~ —LN(u,0?)
: ﬁ“me’"} ~ MVNa(b, Q)

ﬁcost,n
(to capture correlation patterns: lower cost sensitivity correlated with

higher time sensitivity for business travelers?)
m What is the "correct" ?
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Latent class mixed multin. probit model

Forn=1,....N,t=1,...,Tandj=1,...,J—1,

! /
Untj = Wryjot + Xoyfn + €nj,

where

m W, is a vector of P differenced characteristics of j as faced by n
at t corresponding to the fixed coefficient vector a € R,

m Xy is a vector of P, differenced characteristics of j as faced by n
at t corresponding to the random, decision maker-specific
coefficient vector B, € R,

u (enth o agnt(J—1))/ ~ MVNJ—1 (07 i) with i11 — 1!
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Latent class mixed multin. probit model
Forn=1,....N,t=1,...,Tandj=1,...,J—1,
Umj= W,I,U-G+Xr/,tjﬁn+5nﬂa

where
W Y= Z}’:‘ﬂj- 1 (Unjj = max; Upi > 0) + J - 1 (Upg < O for all j)
m and

C
Bn|b,Q~ Y sc- MVNp, (b, Q)

c=1
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Latent class mixed multin. probit model
Forn=1,....N,t=1,...,Tandj=1,...,J—1,
Umj= W,I,U-G+Xr/,tjﬁn+5nﬂa

where
W Y= Z}’:‘ﬂj- 1 (Unjj = max; Upi > 0) + J - 1 (Upg < O for all j)
m and

C
Bn|b,Q~ Y sc- MVNp, (b, Q)

c=1

<= Prob(z;,=c)=s. and Bn|z,b,Q2~MVNp(bz,2z,)
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Data augmentation

m "generate a variable that wasn’t there before"
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Data augmentation

m "generate a variable that wasn’t there before"
m treat the latent utilities U as parameters

Lennart Oelschlager November 24, 2020 5/12



Data augmentation

m "generate a variable that wasn’t there before"
m treat the latent utilities U as parameters

m conditional on the latent utilities, the model constitutes a standard
Bayesian linear regression set-up (U = XB + ¢)
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Data augmentation

m "generate a variable that wasn’t there before"
m treat the latent utilities U as parameters

m conditional on the latent utilities, the model constitutes a standard
Bayesian linear regression set-up (U = XB + ¢)

m drawing from the posterior distribution becomes feasible without the
need to evaluate any likelihood
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Data augmentation

m "generate a variable that wasn’t there before"
m treat the latent utilities U as parameters

m conditional on the latent utilities, the model constitutes a standard
Bayesian linear regression set-up (U = XB + ¢)

m drawing from the posterior distribution becomes feasible without the
need to evaluate any likelihood

m numerical advantages
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Data augmentation

m "generate a variable that wasn’t there before"
m treat the latent utilities U as parameters

m conditional on the latent utilities, the model constitutes a standard
Bayesian linear regression set-up (U = XB + ¢)
m drawing from the posterior distribution becomes feasible without the
need to evaluate any likelihood
m numerical advantages
m avoids approximation of Gaussians
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Data augmentation

m "generate a variable that wasn’t there before"

m treat the latent utilities U as parameters

m conditional on the latent utilities, the model constitutes a standard
Bayesian linear regression set-up (U = XB + ¢)

m drawing from the posterior distribution becomes feasible without the
need to evaluate any likelihood

m numerical advantages

m avoids approximation of Gaussians
m reduces curse of dimensionality (starting values)

Lennart Oelschlager November 24, 2020 5/12



Data augmentation

m "generate a variable that wasn’t there before"

m treat the latent utilities U as parameters

m conditional on the latent utilities, the model constitutes a standard
Bayesian linear regression set-up (U = XB + ¢)

m drawing from the posterior distribution becomes feasible without the
need to evaluate any likelihood

m numerical advantages

m avoids approximation of Gaussians
m reduces curse of dimensionality (starting values)
m faster?
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Priors

We apply the following conjugate priors:
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Priors
We apply the following conjugate priors:

m (S1,...,8¢c) ~ Dg(8), where D¢(6) denotes the C-dimensional
Dirichlet distribution with concentration parameter vector
6=(61,...,0¢),

® o~ MVNp, (g, V),

m b ~ MVNp, (¢, =), independent for all c,

m Qe ~ W,;r1 (v,©), independent for all ¢, where W,;r1 (v, ©) denotes
the P,-dimensional inverse Wishart distribution with v degrees of
freedom and scale matrix ©,

mand X ~ W, (k,N).
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Priors
We apply the following conjugate priors:

m (S1,...,8¢c) ~ Dg(8), where D¢(6) denotes the C-dimensional
Dirichlet distribution with concentration parameter vector
6=(61,...,0¢),

® o~ MVNp, (g, V),

B b: ~ MVNp, (¢, =), independent for all c,

m Qe ~ W,;r1 (v,©), independent for all ¢, where W,;r1 (v, ©) denotes
the P,-dimensional inverse Wishart distribution with v degrees of
freedom and scale matrix ©,

mand X ~ W, (k,N).
Parameters can be set based on previous estimation results or diffuse.
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Gibbs sampler

Drawing from the conditional posteriors:
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Gibbs sampler
Drawing from the conditional posteriors:
draw (81,...,80) | 5,ZN DC
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Gibbs sampler

Drawing from the conditional posteriors:
draw (s1,...,8¢) |6,z ~ D¢
draw z from its conditional distribution
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Gibbs sampler

Drawing from the conditional posteriors:
draw (s1,...,8¢) |6,z ~ D¢
draw z from its conditional distribution
draw b | =,9,¢&, 2,8 ~ MVNp,
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Gibbs sampler

Drawing from the conditional posteriors:
draw (s1,...,8¢) |6,z ~ D¢
draw z from its conditional distribution
draw b | =,9,¢&, 2,8 ~ MVNp,
B draw Q| v,©,2,8,b ~ W'
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Gibbs sampler
Drawing from the conditional posteriors:
draw (s1,...,8¢) |6,z ~ D¢
draw z from its conditional distribution
draw b | =,9,¢&, 2,8 ~ MVNp,
B draw Q| v,©,2,8,b ~ W'
draw U ~ TMVN,_; via sub-Gibbs sampler (Geweke, 1998)
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Gibbs sampler
Drawing from the conditional posteriors:

draw (s1,...,8¢) |6,z ~ D¢

draw z from its conditional distribution

draw b | =,9,¢&, 2,8 ~ MVNp,

B draw Q| v,©,2,8,b ~ W'

draw U ~ TMVN,_; via sub-Gibbs sampler (Geweke, 1998)
1(Ung > max(Up_jy,0)) if Yo =

B Uni | Unt—jy, Vots - -+ ~ MVNj - ) ,
mjl e Yot 1 {1(Untj<maX(Unt(—j),O)) 'f}/nt#f
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Gibbs sampler
Drawing from the conditional posteriors:

draw (s1,...,8¢) |6,z ~ D¢

draw z from its conditional distribution

draw b | =,9,¢&, 2,8 ~ MVNp,

B draw Q| v,©,2,8,b ~ W'

draw U ~ TMVN,_; via sub-Gibbs sampler (Geweke, 1998)
1(Ung > max(Up_jy,0)) if Yo =
1(Unj < maX(Unt(—j),o)) if Yot #J
@A draw o | V,p, W, 5, U, X, 8 ~ MVNp,

u Unt] | Unt(fj)J/nt,' e MVN1 . {
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Gibbs sampler
Drawing from the conditional posteriors:

draw (s1,...,8¢) |6,z ~ D¢

draw z from its conditional distribution

draw b | =,9,¢&, 2,8 ~ MVNp,

B draw Q| v,©,2,8,b ~ W'

draw U ~ TMVN,_; via sub-Gibbs sampler (Geweke, 1998)
1(Ung > max(Up_jy,0)) if Yo =
1(Unj < maX(Unt(—j),o)) if Yot #J
@A draw o | V,p, W, 5, U, X, 8 ~ MVNp,
draw B, | Q,b, X, X, U, W,a ~ MVNp,

u Unt] | Unt(fj)J/nt, e MVN1 . {
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Gibbs sampler
Drawing from the conditional posteriors:
draw (s1,...,8¢) |6,z ~ D¢
draw z from its conditional distribution
draw b | =,9,¢&, 2,8 ~ MVNp,
B draw Q| v,©,2,8,b ~ W'
draw U ~ TMVN,_; via sub-Gibbs sampler (Geweke, 1998)
(Unij > max(Upg(—j),0)) if Yot =j
(Unj < maX(Unt(—j),o)) if Yot #J
@A draw o | V,p, W, X, U, X, B ~ MVNp,
draw B, | Q,b, X, X, U, W,a ~ MVNp,
B draw X |k, A, U, W, 0, X, B~ W, ", (k + NT,A + S)

1
u Unt/ | Unt(fj)J/nt,"' ~ MVN1 . {1
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Gibbs sampler
Drawing from the conditional posteriors:
draw (s1,...,8¢) |6,z ~ D¢
draw z from its conditional distribution
draw b | =,9,¢&, 2,8 ~ MVNp,
B draw Q| v,©,2,8,b ~ W'
draw U ~ TMVN,_; via sub-Gibbs sampler (Geweke, 1998)
(Unj > max(Upy—j),0)) if yne =]
(Unji < max(Ung(—j),0)) if ynt #J
@A draw o | V,p, W, 5, U, X, 8 ~ MVNp,
draw B, | Q,b, X, X, U, W,a ~ MVNp,
B draw X |k, A, U, W, 0, X, B~ W, ", (k + NT,A + S)
Fl start again at Kl

1
u Unt/ | Unt(fj)J/nt,"' ~ MVN1 . {1
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Gibbs sampler

Periods:
m 0,...,B—discard draws
m B/2,...,B—latent class updating
m B,..., R—keep every Qth draw

Lennart Oelschlager
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Gibbs sampler

Periods:
m 0,...,B—discard draws
m B/2,...,B—latent class updating
m B,..., R—keep every Qth draw

0 B/2 B R

Normalization (Imai and van Dyk, 2005):

m ¥ is drawn from the unrestricted space of symmetric,
positive-definite matrices, therefore the samples lack identification

m normalize o /\/(T0)11, b/ / (D)1, @ /(£ D)1, £O/(2O)
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Latent class updating scheme

Within the second half of the burn-in period, every 50th iteration:
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Latent class updating scheme
Within the second half of the burn-in period, every 50th iteration:
m Remove class ¢, if s¢ < &min-
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Latent class updating scheme
Within the second half of the burn-in period, every 50th iteration:
m Remove class ¢, if s¢ < &min-

m Split class c into two classes ¢y and ¢y, if S¢ > emax. The class
means bg, and b, of the new classes ¢y and ¢, are shifted in
opposite directions from the class mean b, of the old class ¢ in the
direction of the highest variance.
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Latent class updating scheme
Within the second half of the burn-in period, every 50th iteration:
m Remove class ¢, if s¢ < &min-

m Split class c into two classes ¢y and ¢y, if S¢ > emax. The class
means bg, and b, of the new classes ¢y and ¢, are shifted in
opposite directions from the class mean b, of the old class ¢ in the
direction of the highest variance.

m Join two classes ¢y and ¢, to one class ¢, if ||be, — be,|| < €distmin-
The parameters of ¢ are assigned by adding the values of s from ¢4
and ¢, and averaging the values for b and Q.
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Simulation 1
P, = 2 with 4 latent classes

10 classes in iteration 1

density
60

40

20
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Simulation 1

P = 2 with 4 true latent classes

10 classes in iteration 13

density

15
10

0.5

10/12
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Simulation 1

P = 2 with 4 true latent classes

10 classes in iteration 158

density
0100

0.075
0.050

0.025
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Simulation 1

P = 2 with 4 true latent classes

9 classes in iteration 25000

density
005

0.04
0.03
0.02
0.01
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Simulation 1

P = 2 with 4 true latent classes

8 classes in iteration 25050

density
005

0.04
0.03
0.02
0.01
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Simulation 1

P = 2 with 4 true latent classes

7 classes in iteration 25100

density
005

0.04
0.03
0.02
0.01
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Simulation 1

P = 2 with 4 true latent classes

6 classes in iteration 25150

density
004

0.03
0.02

0.01
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Simulation 1

P = 2 with 4 true latent classes

5 classes in iteration 25300
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Simulation 1

P = 2 with 4 true latent classes

4 classes in iteration 25350

density
005

0.04
0.03
0.02
0.01
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Simulation 1

P = 2 with 4 true latent classes

4 classes in iteration 1e+05

density
005

0.04
0.03
0.02
0.01
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Simulation 2

P, = 1, controversial choice attribute (e.g. out-of-vehicle travel time)

04-
2
[
c
Q
=}
0.2-
0.0-
! ! !
-5 0
B1
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Simulation 3

P, = 2, sign-restricted choice attribute (e.g. cost)
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Simulation 3

P, = 2, sign-restricted choice attribute (e.g. cost)

5 o 5 5 0
B B2

Estimated mixing distribution (posterior mean as point estimate):

B+ —4.52\ (172 —0.28 —1.33\ (0.86 0.13
[ﬁz ~0.16 - MVNp ( (52" (] T )) 029 MvN ((,50) L (PP e

+ 0.55 - MVN, ((:}:g;) : (0'_72 ?;g))
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Simulation 3

P, = 2, sign-restricted choice attribute (e.g. cost)

5 ; s 5 s
B B2

Estimated mixing distribution (posterior mean as point estimate):
[g;] ~0.16 - MVN, ((_()f‘égz) : (1'72 _1%8)) 10.29 - MVN, ((_41;3) : <°j86 ?:82))
ross e (1), (O 939))
Thanks for listening, questions please!
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